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1 Empirical Tools

In this section we will begin to understand the tools available for us in studying public
finance empirically.

1.1 A First View on OLS: Best fitting Line

Estimating by Ordinary Least Squares (OLS) is a particular way of fitting a line to a set
of points. In particular, OLS fits the line that minimizes the sum of the squares of the
distances to the points. [draw examples of scatterplots and lines which don’t minimize
the sum of squares]

Figure 1: Intro Idea: Best Fitting Line

Formally, assuming a regression line of the following form:

yi � β̂0 + β̂1xi + ei (1)

The line minimizes the sum of the squared vertical distances:

min
b0 ,b1

∑
i

(yi − (b0 + b1xi))2 (2)
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Disability Insurance Example

In the figure belowOLS has been used to fit the best line through the scatterplot of states.

Figure 2: Disability Insurance and Labor Market Strength

The coefficient reveals that a 1 percentage point change in the employment rate is associ-
atedwith 0.85 fewerDI applications per person. If this was a causal relation an explanation
could be that during recessions people find it harder to find a job and are more inclined
to apply for disability insurance to get an income.
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1.2 A Second View on OLS: Conditional Expectation Function

A second way of viewing OLS is as the linear Conditional Expectation Function (CEF). In
order to give meaning to this notion we need to first (re-)introduce a few concepts.

1. Expectations

E(Y) � Y1 × Prob1 + Y2 × Prob2 + ... + Yj × Prob j (3)

2. Variance
Var(Y) � E[Y − µy]2 (4)

3. Covariance
Cov(X,Y) � E[X − µx][Y − µy] (5)

The figure below depicts the conditional mean (/expectation) of the logarithm of weekly
wages for each level of education. Note that about half of the mass is on either side of the
dashed line in each of the distributions.

Since the line looks approximately linear, it does not seem far off to model the conditional
expectation function as linear in this case, i.e.

E[Yi |Xi] � Xiβ (6)
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To get to our OLS regression, note that by definition

yi � E[yi |xi] +
(
yi − E[yi |xi]

)︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸
≡εi

(7)

� β0 + β1xi + εi (8)

which inwords states thatYi can be decomposed into its Conditional Expectation Function
plus a zero-conditional-mean error.

Regression Output

The table below shows the regression output for log earnings on schooling, equivalent to
the previous figure. Like in the figure the intersect is at 5.84 (� $344 per week), and the
slope is 0.067, i.e. wages increase by 6.7% for each additional year of schooling. The 95%
confidence interval for the slope is (0.0668, 0.0681), and is therefore significantly different
from zero.

Example: Height by gender

Let Y � hei ght ,X � gender, average male height = 6 ft, average female height = 5 ft 4 in.
What is the CEF?
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Rename X to D, our usual name for a dummy variable, and let D � 1 if the person is
female, D � 0 if the person is male. Then E[Y |D] � 6 − 2

3 ∗ D (measured in feet). This
means that if we ran OLS we would get β0 � 6, β1 � −2

3 .
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1.3 A Final View on OLS: Correlation

The correlation between two variables, X and Y, is defined as ρx y �
Cov(x ,y)
σxσy

.

What is β1? β1 �
Cov(x ,y)
Var(x) � ρx y

σy
σx
.

In the figure below, the variance of X and Y are roughly equal, so we may ignore the term
σy
σx
. The slopes therefore roughly reflect the correlation between X and Y. When high Y’s

and associated with high X’s, and low Y’s are associated with low X’s, the correlation is
strong and positive, and hence the slope coefficient is high. When all X’s are associated
with roughly the same Y’s, the correlation and hence the slope is close to zero.
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1.4 Diff-in-Diff

WhenworkingwithOLS there are often issueswith determining the direction of causality.
In the example of regressing wages on schooling we cannot tell from the regression
whether a one-year increase in schooling causes a 6.7% increase in wages. This would be
true if the level of schoolingwas randomly assigned in the population, or if themechanism
assignment was independent of the level of wages. However, much economic research
claims that this is not true; people with high ability tend to take more education and get
higher wages. This is an example of amissing variable problem in determining causality.
A classic example of reverse causality is a positive correlation between the rate of police
men and crime. An OLS regression of crime rates on police men may give a positive
correlation, but the causality may in fact be reverse - i.e. more police men does not cause
more crime, but more crime may cause more police men.

To alleviate these two problems with causality economists like to work with experiments
where the treatment and control groups are (roughly) randomly assigned. If the groups
are randomly assigned, then the difference between their outcomes is the causal effect
of the experiment. With natural experiments the big issue is to determine whether the
treatment and control groups are in fact randomly assigned.

One empirical tool often used to study natural experiments is difference-in-differences.
This is used when a policy affects a group in the population and it is possible to find
a comparable group not affected by the policy. Under diff-in-diff we do not need to
assume that the two groups had identical outcomes prior to the implementation of the
experiment, but we do need to assume that the outcomes would have grown in the same
way for the groups if the experiment had not taken place (the parallel trends/common
trend assumption).

The effect of the experiment, under this assumption, is found as

E f f ect � [A f ter − Be f ore]Treatment − [A f ter − Be f ore]Control (9)

which is illustrated in the following graph
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Diff-in-Diff Example Gruber (2000): Canadian Disability Insurance

The figure below show the monthly flat rate (CAD) of the Quebec Pension Plan (QPP) and
the Canada Pension Plan (CPP) over time. It shows that the CPP rate was lower than the
QPP rate in 1973-1986 and then increased to reach the level of the QPP rate in 1987.

Under the assumption that the labor supply participation rate would grow similarly in
Quebec and the rest of Canada had the QPP rate not changed in 1987 onwards, the effect
of the policy on labor force participation can be found using equation 9. This is done in
the table below. It shows that
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E f f ect � [A f ter − Be f ore]CPP − [A f ter − Be f ore]QPP (10)

� [.217 − .200] − [.246 − .256]
(11)

� 0.027 (12)

i.e. under the parallel trend assumption the increase in the flat rate increased the non-
employment rate by 2.7%.

Table of Diff-in-Diff from Gruber
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2 Connecting Theory to Data: Immigration Example

Say that there is a shock to the labor supply curve caused by sudden immigration, while
the demand curve stays fixed.

What is the effect of immigrants on natives’ wages?

Because the demand curve stays fixed, the sudden immigration represents a movement
along the demand curve towards the right.

Regression

From the expression of the demand curve we can derive the following regression

∆W � α + β∆S + ε (13)

where β < 0. But can we truly find that causal effect of the immigration shock on wages
simply by running this regression?

Questions to consider

1. How do we define (/restrict) the labor market? How “big” is ∆S?

• Skill Groups?

– Does the influx of immigrants only affect certain skill groups? E.g. blue
collar workers? Then we might want to look only at the blue collar labor
markets.

• Local labor markets?

– Are only particular geographical areas affected?
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2. Does Demand shift right as well?

• Larger population �⇒ Higher local demand for goods and services �⇒
Higher LD

• Constant K
L Ratio �⇒ Higher LD

• Trade theory �⇒ Higher LD

If so, we won’t be able to infer the demand curve from the OLS regression, and it is
not clear whether wages fall.

3. What would have happened to wages otherwise?

• Is there an underlying trend in wages due to technology/increases in educa-
tional level/... ?

What is the effect of immigrants on natives’ wages?

If the
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3 Extension Questions

1. Hypothetically, if we had before and after data on health insurance costs for a
privately insuring households, and want to test if the rollout of Obamacare reduced
the growth of healthcare costs. Write an OLS equation that could test for that using
an indicator variable for the period before or after the rollout (takes values of 0 or 1
depending on if the data observation fulfills a condition)? What is an example of a
problem that could make that coeficient not express a causal effect?

Costsi � β0 + β1A f teri

where A f teri is an indicator variable taking 1 if it’s the post period. The issue is this
may also capture other trends going on at the time such as if health insurance costs
were already growing then this mixes the effect of time and the rollout into the effect
β1

2. Suppose different states rolled out the online health insurance exchange websites at
different times. We decide to instead try to use Diff-in-Diffs to test if the rollout of
the online health insurance exchange reduced the growth of healthcare costs. What
is the treatment group? What is the control group? What do you need to check to
see if this method is applicable?

Treatment group is states that rolled out the online exchange, and had it working in
an earlier period (e.g. first 3 months) vs the control group is those states that took
longer (e.g. 3 months after original target). We need to check if parallel trends in the
two groups health care cost growth existed before the obamacare rollout.

3. Suppose the test before for trends holds. You find the growth of healthcare costs in
states with early online rollouts is 1.8% and the growth in healthcare costs in states
with later rollouts is 2.3%. How would you interpret your results?

The effect of an earlier online system rollout is reduced healthcare cost growth by
0.5% in the first year of Obamacare. This suggests at least this part of the obamacare
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program prevents costs from growing as fast. Of course, you could also argue this is
messier in real life since the online system that gets rolled out could be of different
quality depending upon whether the government supports the program or not. So
there’s still a danger we’ve conflated this timing effect with some other effects such
as differing quality being offered.
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